Mirrored stainless steel substrate provides improved signal for Raman spectroscopy of tissue and cells

نویسندگان

  • Aaran T. Lewis
  • Riana Gaifulina
  • Martin Isabelle
  • Jennifer Dorney
  • Mae L. Woods
  • Gavin R. Lloyd
  • Katherine Lau
  • Manuel Rodriguez‐Justo
  • Catherine Kendall
  • Nicholas Stone
  • Geraint M. Thomas
چکیده

Raman spectroscopy (RS) is a powerful technique that permits the non-destructive chemical analysis of cells and tissues without the need for expensive and complex sample preparation. To date, samples have been routinely mounted onto calcium fluoride (CaF2) as this material possesses the desired mechanical and optical properties for analysis, but CaF2 is both expensive and brittle and this prevents the technique from being routinely adopted. Furthermore, Raman scattering is a weak phenomenon and CaF2 provides no means of increasing signal. For RS to be widely adopted, particularly in the clinical field, it is crucial that spectroscopists identify an alternative, low-cost substrate capable of providing high spectral signal to noise ratios with good spatial resolution. Results show that these desired properties are attainable when using mirrored stainless steel as a Raman substrate. When compared with CaF2, data show that stainless steel has a low background signal and provides an average signal increase of 1.43 times during tissue analysis and 1.64 times when analyzing cells. This result is attributed to a double-pass of the laser beam through the sample where the photons from the source laser and the forward scattered Raman signal are backreflected and retroreflected from the mirrored steel surface and focused towards collection optics. The spatial resolution on stainless steel is at least comparable to that on CaF2 and it is not compromised by the reflection of the laser. Steel is a fraction of the cost of CaF2 and the reflection and focusing of photons improve signal to noise ratios permitting more rapid mapping. The low cost of steel coupled with its Raman signal increasing properties and robust durability indicates that steel is an ideal substrate for biological and clinical RS as it possesses key advantages over routinely used CaF2. © 2016 The Authors. Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Diamond Deposition on AISI 316 & 430 Stainless Steel Substrares

In this paper, the nucleation and growth of diamond/diamond-like coatings on austenitic (AISI 316) and ferritic (AISI 430) stainless steel substrates have been investigated using torch technique. The effects of substrate surface preparation has also been studied. The quality of coatings produced has been examined using optical and scanning electron microscopy, X-ray diffraction, Raman spectros...

متن کامل

Investigation of Diamond Deposition on AISI 316 & 430 Stainless Steel Substrares

In this paper, the nucleation and growth of diamond/diamond-like coatings on austenitic (AISI 316) and ferritic (AISI 430) stainless steel substrates have been investigated using torch technique. The effects of substrate surface preparation has also been studied. The quality of coatings produced has been examined using optical and scanning electron microscopy, X-ray diffraction, Raman spectros...

متن کامل

Laser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film

Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...

متن کامل

Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction

Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...

متن کامل

Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction

Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2017